
Towards Automatic Detection of Implicit Equality Constraints in

Stability Verification of Hybrid Systems
∗

Eike Möhlmann and Oliver Theel

Carl von Ossietzky University of Oldenburg

Department of Computer Science

D-26111 Oldenburg, Germany

{eike.moehlmann,theel}@informatik.uni-oldenburg.de

Abstract—We present a powerful heuristic that

detects implicit equality constraints that may occur

in the specification of systems of constraints in order

to find Lyapunov-based certificates of stability for

hybrid systems. A hybrid system is a fusion of systems

exhibiting discrete-time as well as continuous-time

behavior, e.g. embedded systems within a physical

environment. Stability is a property which ensures

that a system starting in any possible state will

reach a desired state and remain there. Such systems

are particularly useful where a certain autonomous

operation is required, e.g. keeping a certain temper-

ature or speed of a chemical reaction or steering a

vehicle over a predefined track. Stable hybrid systems

are extremely valuable because after an error has

disturbed their normal operation, they automatically

“steer back” to normal operation. Stability can be

certified by finding a so-called Lyapunov function. The

search for this kind of function usually involves solving

systems of inequality constraints. We have identified

and implemented a heuristic that detects implicitly

specified equality constraints and tries to resolve them

by substitution.

Keywords—Hybrid Systems; Automatic Verifi-

cation; Stability; Lyapunov Theory; Optimization;

Sums-of-Squares

I. INTRODUCTION

We present a simple but yet powerful

heuristic which detects implicitly specified

equality constraints in a system of constraints

that is generated for the search of Lyapunov

functions. A Lyapunov function can be used

to certify that a given hybrid system is in-

deed stable. It can be seen as a “generalized

metric” whose value indicates for a given

system state the “distance” to the desired

system state, the so-called equilibrium point.

∗
This work has been partly supported by the German

Research Foundation (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

The equilibrium point is w.l.o.g. assumed to

be the origin, i.e. 0, of the state space. Lya-

punov functions have a special shape which

guarantee that while the system evolves, their

values and, thereby, the “distance” decreases.

Thus, any system for which a Lyapunov

function can be found, eventually reaches

the equilibrium point. For some systems, it

is even possible to give a bound on the

rate with which the system approaches the

origin. In that case, one can compute an

upper bound on the time required to reach a

certain region around the equilibrium point.

This is especially useful if one is interested

in region stability.

The search for Lyapunov functions in-

volves generating and solving sets of con-

ditioned constraints, where each conditioned

constraint has the form ∀x ∈ P : 0 4 f(x).
Here, “0 4 f(x)” is a linear constraint on

polynomials involving some free parameters,

where “4” is the positive semi-definiteness

operator, and P is the region in which the

constraint has to be satisfied. Generating the

constraints required by the famous Lyapunov

theorem naively may lead to the following

snippet:

∀x ∈ P1 : 0 4 f1(x)

∀x ∈ P2 : 0 4 f2(x)

where P1 = P2 and f1 = −f2. Conditioned

constraints cannot directly be given to a

solver (such as CSDP [1] or SDPA [2]). So,

instead, one uses the so-called S-Procedure

which then constructs the following represen-

tation:

0 4 f1(x) − p1(x)

0 4 f2(x) − p2(x)

where p1 (resp. p2) encodes the condition

∀x ∈ P1 (resp. ∀x ∈ P2) by introducing new

free parameters. This means that p1 and p2

contain different parameters (i.e. p1 6= p2)

which is good, because it allows more free-

dom in case f1 6= −f2. But in the special

case of f1 = −f2, it imposes unnecessary

difficulties since a solver is required to assign

some free parameters exact valuations, which

is – unfortunately – bad.

In practice, the problem is even worse

since numerical solvers sometimes suffer

from numerical inaccuracies. Therefore, ad-

ditional “gaps” are added to the inequalities

in order to make the constraints more robust

against these numerical issues. Let gi with

∀x ∈ Pi : 0 4 gi(x) where i ∈ {1, 2} be

such gap terms. Trying to solve the following

constraints:

∀x ∈ P1 : 0 4 f1(x) − g1(x)

∀x ∈ P2 : 0 4 f2(x) − g2(x)

in the case where P2 = P1 and f2 = −f1

does not yield a solution since ∀x ∈ P1 :
0 4 g1(x) 4 f1(x) ∧ 0 4 g2(x) 4 −f1(x) is

obviously a contradiction unless P1 ⊆ {0}.

But the intended conditioned constraint ∀x ∈
P1 : f1(x) = 0 may be easy to solve.

For our tool, Stabhyli [3], we have im-

plemented a simple heuristic to detect and

resolve such situations. The heuristic ana-

lyzes the conditioned constraints before the

unconditioned constraints get generated and

removes implicit equalities by substitution of

free parameters in the other constraints.

Similar techniques to detect implicit

equalities are used, for example, in satis-

fiability modulo theories solving for linear

arithmetic [4]. However, we have to deal with

polynomial constraints which we show how

to handle in the special settings, where the

constraints arise from proving stability using

Lyapunov functions.

The remainder of the paper is organized

as follows: Section II gives the theoretical

background and Section III describes the

detection and replacement heuristic as well as

some examples. A final conclusion is given

in Section IV.

II. PRELIMINARIES

In this section, we define the hybrid sys-

tem model, stability and the techniques re-

quired to certify stability of a hybrid system.

Definition 1: A Hybrid Automaton is a

quintuple

H = (V , M, T , Flow, Inv) where

• V is a finite set of variables and S =
R

|V| is the corresponding continuous

state space,

• M is a finite set of modes,

• T is a finite set of transitions

(m1, G, R, m2) where

◦ m1, m2 ∈ M are the source and

target mode of the transition, respec-

tively,

◦ G ⊆ S is a guard which restricts the

valuations of the variables for which

this transition can be taken,

◦ R : S → S is the reset function

which might reset some valuations of

the variables,

• Flow : M → [S → P(S)] is the flow

function which assigns a flow to every

mode. A flow f ⊆ S → P(S) in turn

assigns a closed subset of S to each x ∈
S, which can be seen as the right hand

side of a differential inclusion ẋ ∈ f(x),
• Inv : M → S is the invariant function

which assigns a closed subset of the

continuous state space to each mode

m ∈ M, and therefore restricts valu-

ations of the variables for which this

mode can be active.

A trajectory of H is an infinite solution

in form of a function x(t) over time. Each

solution has an associated (possibly infinite)

sequence of modes visited by the trajectory.

Intuitively, stability is a property expressing

that all trajectories of the system eventually

reach an equilibrium point of the sub-state

space and stay in that point forever, given the

absence of errors. For technical reasons, the

equilibrium point is usually assumed to be

the origin of the continuous state space, i.e.

0. This is not a restriction, since a system can

always be shifted such that the equilibrium is

0 via a coordinate transformation.

In the following, we refer to x|V ′ ∈ R
|V ′|

as the sub-vector of a vector x ∈ R
V con-

taining only values of variables in V ′ ⊆ V .

Definition 2: Global Asymptotic Stabil-

ity with Respect to a Subset of Vari-

ables [5].

Let H = (V , M, T , Flow, Inv) be a hybrid

automaton, and let V ′ ⊆ V be the set of

variables that are required to converge to

the equilibrium point 0. A continuous-time

dynamic system H is called globally stable

(GS) with respect to V ′ if for all functions

x|V ′(t),

∀ǫ>0 : ∃δ >0 : ∀t ≥ 0 :
∣

∣

∣

∣

∣

∣x(0)
∣

∣

∣

∣

∣

∣<δ ⇒
∣

∣

∣

∣

∣

∣x|V ′(t)
∣

∣

∣

∣

∣

∣<ǫ.

H is called globally attractive (GA) with

respect to V ′ if for all functions x|V ′(t),

lim
t→∞

x|V ′(t) = 0, i.e.,

∀ǫ>0 : ∃t0 ≥0 : ∀t>t0 :
∣

∣

∣

∣

∣

∣x|V ′(t)
∣

∣

∣

∣

∣

∣<ǫ,

where 0 is the origin of R|V ′|. If a system is

both, globally stable with respect to V ′ and

globally attractive with respect to V ′, then it

is called globally asymptotically stable (GAS)

with respect to V ′.

Intuitively, GS is a boundedness condition,

i.e. each trajectory starting δ-close to the

origin will remain ǫ-close to the origin. GA

ensures progress, i.e. for each ǫ-distance to

the origin, there exists a point in time t0 such

that a trajectory always remains within this

distance. By induction, it follows that every

trajectory eventually approaches the origin.

For a given hybrid system, this can be proven

using Lyapunov Theory [6], which was origi-

nally restricted to continuous systems but has

been lifted to hybrid systems.

We are handling polynomial hybrid sys-

tems. Thus, we assume that all guards, in-

variants, and flows are defined as expressions

over polynomials. A monomial has the form
∏

v∈V vev,j where all exponents ev,j ∈ N. A

weighted sum of such monomials is called a

polynomial g : R|V| → R and has the form

g(x) =
∑

j cj

∏

v∈V vej,k where all cj ∈ R.

Such a polynomial is called a parameter-

ized polynomial if it has the form f(x) =

∑

j cjρj

∏

v∈V vev,j where ρj is a parameter

and ρj

∏

v∈V vev,j is called a parameterized

monomial. Indeed, the parameter in a param-

eterized monomial is rather optional, but to

increase readability and shorten the formulas,

we assume every summand in a parameter-

ized polynomial to have a parameter where

a “dummy” parameter might also represent a

constant 1.

Theorem 1: Discontinuous Lyapunov

Functions for a Subset of Variables [5].

Let H = (V , M, T , Flow, Inv) be a hybrid

automaton and let V ′ ⊆ V be the set of

variables that are required to converge. If for

each m ∈ M, there exists a set of variables

Vm with V ′ ⊆ Vm ⊆ V and a continuously

differentiable function Vm : S → R such

that

1) for each m ∈ M, there exist two class

K
∞ functions α and β such that

∀x ∈ Inv(m) : α
(∣

∣

∣

∣

∣

∣x|Vm

∣

∣

∣

∣

∣

∣

)

4 Vm(x)

∧ Vm(x) 4 β
(
∣

∣

∣

∣

∣

∣x|Vm

∣

∣

∣

∣

∣

∣

)

,

2) for each m ∈ M, there exists a class

K
∞ function γ such that

∀x ∈ Inv(m) : V̇m(x) 4 −γ
(
∣

∣

∣

∣

∣

∣x|Vm

∣

∣

∣

∣

∣

∣

)

for each

V̇m(x) ∈
{〈

dVm(x)
dx

∣

∣

∣f
〉
∣

∣

∣f ∈ Flow(m)
}

,

3) for each (m1, G, R, m2) ∈ T ,

∀x ∈ G : Vm2(R(x)) 4 Vm1(x),

then H is globally asymptotically stable with

respect to V ′ and Vm is called a Local Lya-

punov Function (LLF) of mode m.

In Theorem 1, “
〈

dV(x)
dx

∣

∣

∣f
〉

” denotes the inner

product between the gradient of a Lyapunov

function V and a flow function f . Further-

more, each constraint has the form 0 4 c(x)
where “4” is a positive semi-definiteness

operator which requires that c(x) is non-

negative almost everywhere and c(0) = 0.

Definition 3: A Constraint is either

called

• unconditioned iff it exhibits the form

0 4 f(x) or

• conditioned iff it exhibits the form

∀x ∈ P : 0 4 f(x)

where f(x) is a parameterized polynomial,

P ⊂ S is a subset of the continuous state

space, and ∀x ∈ S is called the condition.1

Definition 4: Using the S-Procedure [7],

a conditioned constraint can be transformed

into an unconditioned constraint. The S-

Procedure restricts a constraint to some re-

gion by exploiting the fact that finding a

solution for
(

∑

i

ai · gi(x)

)

+

(

∑

i

bi · hi(x)

)

4 g(x)

with ai ≥0 implies

(

∧

i

0 4 gi(x)

)

∧

(

∧

i

0 = hi(x)

)

⇒ 0 4 g(x).

Note that the parameters bi of the equality

conditions 0 = hi(x) are not required to be

non-negative.

To find a set of Lyapunov functions for

a hybrid system, one also needs to supply

the solver with templates, which are param-

eterized polynomials, which usually contain

all monomials up to some certain degree

constructible as combinations of variables.

The following steps are performed using the

templates: Generate the constraint system

described by Theorem 1, then use the S-

Procedure to cast the conditioned constraints

into unconditioned ones, and then try to

solve2 them. Upon success, we have a cer-

tificate of stability. Note that one cannot

conclude non-stability from failing to solve

the constraints since the described method

is sound but incomplete. Higher degree tem-

plates could still render the problem solvable.

1We assume the conditions to be expressed as a con-
junction of equalities and inequalities over polynomials, i.e.
∧

i
g(x)△0 where g(x) is a polynomial and △ is a relation

with △ ∈ {=, ≥, >}.
2Further steps are required like translating the polynomial

constraints to linear matrix inequalities (LMIs) which, in
turn, can be solved using solvers for positive semi-definite
problems. This type of translation can be done by using the
Sums-of-Squares decomposition [8].

III. SIMPLIFYING CONSTRAINT

SYSTEMS

In this section, we give the concrete prob-

lem statement and then describe the heuristic

used to simplify the constraint systems.

For a constraint 0 4 f(x), a constraint

0 4 g(x) is called a matching constraint iff

0 4 f(x)∧0 4 g(x) implies that 0 = f(x) =
g(x). Note the special case g(x) = −f(x).

Problem:

Given a set of conditioned constraints

C1, . . . , Cn, each of the form Ci =
(P, fi(x), gi(x)). We want to find a con-

ditioned constraint Ck = (P ′, fk(x), gk(x))
such that ∃d1, . . . , dn :

∑

i di ·fi(x) = −fk(x)
with di ≥ 0.

Roughly speaking, we are searching for

conditioned constraints for which one can

obtain a matching constraint via a conic com-

bination of the other constraints. In theory,

the factors di are not restricted to scalar

factors and can be arbitrary positive semi-

definite monomials since it is a well-known

fact that the result of a product of posi-

tive semi-definite functions is again positive

semi-definite. This allows us to find the im-

plicit equality in the following example:

Example 1:

Given the following system of conditioned

constraints:

∀x ∈ P : ρ1x
2
4 ρ2x

2 (1)

∀x ∈ P : ρ2x
4
4 ρ1x

4 (2)

by multiplying the inequality in Constraint 1

with x2, we obtain

∀x ∈ P : ρ1x
4
4 ρ2x

4 ∧ ρ2x
4
4 ρ1x

4

from which we conclude that

∀x ∈ P : ρ1x
4 = ρ2x

4.

However, we restrict the factors to scalars

since implicit equality constraints are mainly

caused by the constraints of Type 3 in The-

orem 1. Since these constraints are relating

the different templates only, a free parameter

(ρ) usually occurs only in a single param-

eterized monomial, so a situation such as

in Example 1 does not need to be handled.

Furthermore, due to this restriction, a simple

linear program (LP) can be used to search for

implicit equality constraints which we show

how to obtain in the following.

We start with a system of conditioned con-

straints obtained by generating all constraints

required by Theorem 1. Then, we group

conditioned constraints by their condition,

thereby obtaining a finite number of groups

of conditioned constraints. Each such group

has the form:

∀x ∈ P :

0 4 f1(x) =
∑

j

c(j,1)ρ(j,1)

∏

v∈V

ve(v,j,1)

∧ . . .

∧ 0 4 fn(x) =
∑

j

c(j,n)ρ(j,n)

∏

v∈V

ve(v,j,n) .

Here, a cj,k is the j-th coefficient of the k-

th conditioned constraint belonging to the

j-th parameterized monomial of the same

constraint.

In each group, we now search for a condi-

tioned constraints Ck for which we can syn-

tactically construct a matching constraint as

a conic combination of the other constraints:

∃d1, . . . , dn ≥ 0 :
∑

i

difi(x) = −fk(x)

or equivalently:

∃d1, . . . , dn ≥ 0 :
∑

i

difi(x) + fk(x) = 0

By syntactically replacing all parameterized

monomials ρ(j,i)
∏

v∈V ve(v,j,i) with a new

symbol z(j,i), we have:

∃d1, . . . , dn ≥ 0 :
∑

i

di

∑

j

c(j,i)z(j,i)

+
∑

j

c(j,k)z(j,k) = 0.

Reordering the m syntactical different mono-

mials z1, . . . , zm leads to:

∃d1, . . . , dn ≥ 0 :
∑

i

di

m
∑

j

c(j,i)zj

+
m
∑

j

c(j,k)zj = 0.

North

ẋ = 0

ẏ = −2

−y ≤ x ≤ y

x
2 + y

2 ≥ 1

Center

ẋ = −x

ẏ = −y

x
2 + y

2 ≤ 1

West

ẋ = 2

ẏ = 0

x ≤ y ≤ −x

x
2 + y

2 ≥ 1

East

ẋ = −2

ẏ = 0

−x ≤ y ≤ x

x
2 + y

2 ≥ 1

South

ẋ = 0

ẏ = 2

y ≤ x ≤ −y

x
2 + y

2 ≥ 1

x = y

x = −yx = y

x = −y

x = −y

x = y x = −y

x = y

x
2 + y

2 = 1

x
2 + y

2 = 1 x
2 + y

2 = 1

x
2 + y

2 = 1

Fig. 1. Hybrid system describing a robot automatically
approaching a certain region Center

By grouping the monomials zj , we obtain

∃d1, . . . , dn ≥ 0 :
m
∑

j

((

∑

i

dic(j,i)

)

+ c(j,k)

)

zj = 0.

Now, observe that a solution for the LP

∀1 ≤ j ≤ m :
∑

i

dic(j,i) = −c(j,k)

with di ≥ 0 yields a valid solution for the

above constraint system and

∀x ∈ P :0 4
∑

i

difi(x)

is a constructible matching constraint for the

k-th constraint. Note, that in order to ease

finding a solution for the LP, the parameter

dk should be set to 0, a priori. Also, note

that if it is known that the templates are not

scaled, i.e. the constraints are not normalized,

the problem can even be reduced to a binary

program where di ∈ {0, 1}.

Example 2:

Figure 1 shows a hybrid automaton modeling

a simple robot whose goal is to reach a

certain target region Center independent

of the starting point (somewhere in North,

East, South, or West) with a maximal

velocity of 2km/h. Whenever it is not yet

close to the Center, it drives full throttle

in the cardinal direction of the center (thus

its direction depends only on the quadrant

the robot is in). Being close (less than one

kilometer) to the target, the robot’s strategy

changes and it follows a radio signal direct-

ing it directly towards the target. The vector

field is visualized in Figure 2.

Generating the constraint system for this

hybrid automaton leads to three constraints

per mode and one constraint per transition –

thus 27 constraints in total. Here we focus

only on the constraints generated for the

transitions which are:

x = y ⇒ VN 4 VE (3)

x = y ⇒ VE 4 VN (4)

x = y ⇒ VS 4 VW (5)

x = y ⇒ VW 4 VS (6)

x = −y ⇒ VN 4 VW (7)

x = −y ⇒ VW 4 VN (8)

x = −y ⇒ VE 4 VS (9)

x = −y ⇒ VS 4 VE (10)

x2 + y2 = 1 ⇒ VC 4 VN (11)

x2 + y2 = 1 ⇒ VC 4 VE (12)

x2 + y2 = 1 ⇒ VC 4 VS (13)

x2 + y2 = 1 ⇒ VC 4 VW (14)

where VC , VN , VE, VS, VW are the templates

for the Lyapunov function for the individual

modes Center, North, East, South, and

West, respectively. By applying the proce-

dure described above, we derive that Con-

straint 3 and Constraint 4, Constraint 5 and

Constraint 6, Constraint 7 and Constraint 8,

and Constraint 9 and Constraint 10 are pair-

wise matching constraints. In the textual pre-

sentation above, this can be easily seen, but

matching constraints can be much harder to

detect in practice, since the templates are

not given in this explicit form but instead

are given as parameterized polynomials. The

templates might be Vi = ρ(i,1)x
2 + ρ(i,2)xy +

ρ(i,3)y
2 + ρ(i,4)x + ρ(i,5)y + ρ(i,6) for i ∈

{N, E, S, W, C}, which serve as good candi-

dates in this example. However we conclude

that

x = y ⇒ VN = VE, (15)

x = −y ⇒ VN = VW , (16)

x = −y ⇒ VE = VS, (17)

x = y ⇒ VS = VW . (18)

x

y

1−1

1

−1

x = −y

x = −yx = y

x = y

Fig. 2. Visualization of the vector field of the movement
of the robot defined in Figure 1

Thus in case of Equality 15 together with the

condition, we have

x = y ⇒ (ρ(N,1) − ρ(E,1))x
2

+ (ρ(N,2) − ρ(E,2))xy

+ (ρ(N,3) − ρ(E,3))y
2

+ (ρ(N,4) − ρ(E,4))x

+ (ρ(N,5) − ρ(E,5))y

+ (ρ(N,6) − ρ(E,6)) = 0.

By eliminating the condition, we get the

unconditioned constraint

(ρ(N,1) + ρ(N,2) + ρ(N,3)

− ρ(E,1) + ρ(E,2) + ρ(E,3))y
2

+ (ρ(N,4) + ρ(N,5) − ρ(E,4) + ρ(E,5))y

+ (ρ(N,6) − ρ(E,6)) = 0

in which we can now isolate one of the

parameterized monomials and use it to sub-

stitute it in the other constraints. Here, a

promising candidate is to replace ρ(E,6) with

(ρ(N,1) + ρ(N,2) + ρ(N,3) − ρ(E,1) + ρ(E,2) +
ρ(E,3))y

2 +(ρ(N,4) +ρ(N,5) −ρ(E,4) +ρ(E,5))y+
ρ(N,6). By doing so, we reduce the number

of free parameters by one and the number

of constraints by two. We can repeat the

procedure with the other three implicit Equal-

ities 16-18 and remove six more constraints

and three more parameters.

Example 3:

The third example given in Figure 3 does not

describe a system for a particular purpose.

But it shows that implicit equality constraints

Mode1

ẋ = −2

1 ≤ x ≤ 100

Mode2

ẋ = −4

1 ≤ x ≤ 100

Mode3

ẋ = −1

0 ≤ x ≤ 1

x = 1

x = 1x = 1

Fig. 3. Hybrid system showing that implicit equality
constraints might involve more than two transitions

can involve more than two constraints. Here,

the transitions would require:

x = 1 ⇒ V2 4 V1 (19)

x = 1 ⇒ V3 4 V2 (20)

x = 1 ⇒ V1 4 V3 (21)

where V1, V2, and V3 are the Lyapunov

function templates for Mode1, Mode2, and

Mode3, respectively. And by combination of

the constraints, we can conclude:

x = 1 ⇒ V1 = V2 = V3 (22)

which allows us to remove three constraints

and two free parameters from the constraint

system.

For all three examples, Lyapunov func-

tions can only be found if (a) no gaps are

used to strengthen the constraints which,

then, risks that the values returned by a solver

do not form a valid Lyapunov function or (b)

implicit equality constraints are detected and

resolved which, thereby, discards the need for

gaps on these constraints.

IV. CONCLUSION

We have shown a simple but yet powerful

heuristic that detects implicit equality con-

straints. Our heuristic is sound but incom-

plete and searches for equality constraints

using linear programming. In our case, the

constraints that we have to consider, do have

a special shape. Thanks to this shape; the

heuristic is sufficient in many cases and es-

pecially in the settings of finding Lyapunov

functions. After applying the heuristic we

can use the gained knowledge, i.e., the de-

tected equality constraints, to replace free

parameters in the constraint system which not

only reduces the number of free parameters

but also the number of constraints. We have

presented three examples where the search

for Lyapunov functions certifying stability of

these hybrid systems would fail because of

additional gaps that are required to make the

constraint system robust against numerical

issues. But by using our heuristic, it is easy to

find Lyapunov functions for two of them. Fu-

ture work will include to generate quadratic

monomials and the inclusion of the products

between the constraints and these monomials

in the linear problem. This will make the

heuristic applicable to a more general case.

REFERENCES

[1] B. Borchers, “CSDP, a C Library for Semidef-

inite Programming.” Optimization Methods and

Software, vol. 10, pp. 613–623, 1999.

[2] K. Fujisawa, K. Nakata, M. Yamashita, and

M. Fukuda, “SDPA Project : Solving Large-

Scale Semidefinite Programs,” Journal of the

Operations Research Society of Japan, vol. 50,

no. 4, pp. 278–298, Dec. 2007.

[3] E. Möhlmann and O. E. Theel, “Stabhyli: a

Tool for Automatic Stability Verification of Non-

Linear Hybrid Systems,” in Hybrid Systems:

Computation and Control, C. Belta and F. Ivan-

cic, Eds. ACM, 2013, pp. 107–112.

[4] L. Li, K.-D. He, M. Gu, and X.-Y. Song, “Equal-

ity Detection for Linear Arithmetic Constraints,”

Journal of Zhejiang University SCIENCE A,

vol. 10, pp. 1784–1789, 2009.

[5] J. Oehlerking, “Decomposition of Stability

Proofs for Hybrid Systems,” Ph.D. dissertation,

Carl von Ossietzky University of Oldenburg,

Department of Computer Science, Oldenburg,

Germany, 2011.

[6] M. Lyapunov, “Problème général de la stabilité

du movement,” in Ann. Fac. Sci. Toulouse, 9.

Université Paul Sabatier, 1907, pp. 203–474.

[7] S. Boyd and L. Vandenberghe, Convex Optimiza-

tion. Cambridge University Press, Mar. 2004.

[8] S. Prajna and A. Papachristodoulou, “Analysis of

Switched and Hybrid Systems - Beyond Piece-

wise Quadratic Methods,” Proceedings of the

ACC, 2003.

