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Abstract—Software evolution encompasses a wide
variety of activities to analyze, reverse engineer, trans-
form, and visualize software systems, requiring prop-
erly integrated tool support. Many tools are available,
however, most implement only a single technique, and
offer little to no interoperability. Towards a service-
oriented integration approach, this paper presents a
service description model, developed along two case
studies, as a basis for cataloging and standardizing
activities and techniques as services. As proof-of-
concept, a prototype has been implemented, realizing
one of the case studies.

Keywords—Software Evolution, Tool Interoper-
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I. INTRODUCTION
Software systems continue to evolve after

their initial deployment. Over time, these
systems “erode”, and become harder to main-
tain, yet often embody a substantial business
value for their owning companies. Therefore,
effort has to be spent on keeping software
systems evolvable.

To this end, software evolution offers ac-
tivities and associated techniques to analyze,
reverse engineer, transform, and visualize
software systems. Due to the large size of
industry-scale software systems, these activi-
ties have to be tool-supported to be feasible.
There are many tools available, however,
most implement only a single technique, and
offer little to no means for interoperability.
Most tool suites, which combine several tech-
niques (e.g. Bauhaus [1]), focus on activities
for program comprehension only, and offer
no means for project-specific tailoring.

Borchers [2] observes that a large
amount of the tool infrastructure is project-
independent, yet goal-specific tailoring is
always necessary, as well. Building such
toolchains requires hand-written “glue logic”
and ad-hoc functionality (e.g. to transform
data formats, or make control flow deci-
sions), which yields tightly-coupled tools,
little reusability, and inflexible projects. Ide-
ally, software evolution practitioners should

be enabled to focus on their project-specific
goals and activities as much as possible, and
not having to consider tool integration issues.

To facilitate this, software evolution activ-
ities have to be described on a high level,
to abstract from concrete implementations,
focus on specifying required functionalities,
and standardize them. The approach pur-
sued by the authors is based on taking a
service-oriented view to model and decom-
pose software evolution activities on a con-
ceptual, implementation-agnostic level, and
subsequently fill a catalog of software evo-
lution services, which can serve as the basis
for a component-based framework to largely
automate integration. Envisioned is a solution
to allow practitioners to model only their
project’s workflows in terms of required ser-
vices and their coordination, and generate an
integrated solution by mapping services to
concrete implementations which abide by the
services’ specifications.

In this paper, a description model for soft-
ware evolution services is developed along
two case studies, modeling the activities
of architecture reconstruction and software
measurement as services, to identify the in-
formation required to comprehensively spec-
ify and catalog services. A service model
of software measurement was created, and a
prototypical realization using existing com-
ponents was implemented for validation.

The remainder of this paper is outlined
as follows: Section II presents the general
idea of using a service-oriented approach to
software evolution tool interoperability, and
Section III discusses related work. Section IV
introduces the case studies, and requirements
derived from them. The service description
model based on them is introduced in Sec-
tion V. Section VI describes the proof-of-
concept implementation of the software mea-
surement case study. The paper closes with
a summary and an outlook in Section VII.



II. SERVICE-ORIENTED TOOL
INTEROPERABILITY

In this paper, a service-oriented view to-
wards tool interoperability is taken. The core
idea is to identify software evolution activ-
ities and the techniques and tools used to
carry them out, and to lift them onto the ab-
stract, generic, and implementation-agnostic,
yet rigid functional description level of ser-
vices. This leads to a software evolution
service catalog, serving as taxonomy of the
field, as reference for standardized interfaces,
and by extension, as basis for an automated
tool integration framework.

The approach is referred to as SENSEI
(Software EvolutioN SErvices Integration),
and embodies the following vision: A ser-
vice catalog, containing abstract, generic, yet
rigorous descriptions of software evolution
services, is used to pick the services required
to support the project’s activities and achieve
its goals. A service orchestration is modeled,
defining how the selected services are coor-
dinated to interact with each other. A compo-
nent registry provides a mapping between ab-
stract services and concrete implementations
by tools. These are encapsulated in, or devel-
oped as, components, conforming to the com-
ponent model of an underlying framework.
A set of model transformations embodies
the mapping to a specific implementation
technology. With all these artifacts, a model-
driven code generator produces the required
platform-specific code which realizes tool
integration.

The final result is a set of tools integrated
into an application framework able to execute
the specified software evolution processes.

SENSEI is based on concepts from ser-
vice-oriented, component-based, and model-
driven software engineering paradigms. In
particular, there is a clear and important
distinction to be made between abstract ser-
vices, which only contain a specification of
a functionality with standardized interfaces,
and components, which provide actual im-
plementations and conform to the realized
services’ interfaces.

III. RELATED WORK
A project which shares several ideas with

SENSEI is SOFAS [3]. It also introduces
services, although here, the term is closely
related to the implementation technology,
namely RESTful web services. Similar to
SENSEI, it aims at integrating tools by or-
chestrating services into workflows. It fur-
ther shares the concepts of a composer to
enact orchestrations, and a service catalog
with SENSEI. The approach is restricted to
software analysis activities, which is explic-
itly exploited by making assumptions about
their uniformity. It is focused on the actual
framework and the services it can provide,
and less on providing a generic, technology-
independent concept as SENSEI is.

SENSORIA [4] was a large research
project running for five years until 2010,
aimed at creating a comprehensive software
engineering approach for software systems
based on service-oriented architecture. It de-
veloped many concepts for service-oriented
engineering, one being the model-driven gen-
eration of integrated software systems from
higher-level descriptions like BPEL-based or-
chestrations [3]. The project was neither fo-
cused on software evolution, nor was tool
interoperability its central concern, though.

Similar ideas lie at the core of work by
Kraemer et al. [5], [6], who also aim to
automate the mapping of orchestrations to
executable code, and closing the gap be-
tween high-level, process-oriented modeling
and the implementation level, using model-
driven techniques. Their approach involves
transforming an orchestration as a UML ac-
tivity diagram into a UML state machine, as
an intermediate step to generate code.

Another approach for model-driven tool
integration, aimed at software development
toolchains, is ModelBus [7], and the related
reference technology platform defined in the
CESAR project [8]. Its use cases are the in-
tegration of tools like requirements manage-
ment software, integrated development envi-
ronments, software modeling tools, etc.

Also in the domain of integrating soft-
ware development tools are the works by
Biehl et al. [9]. It is similar to SENSEI in



several regards, e.g. it is based on services
and their orchestration (using their domain-
specific tool integration language TIL), and
model-driven techniques to derive executable
toolchains, for which they also chose SCA as
target platform (compare Section VI). They
address a different domain, with use cases
from embedded software development. Dis-
covery and description of relevant services,
their cataloging and their standardization is
not addressed.

In summary, approaches for tool integra-
tion in domains other than software evolution
do exist, and are in part built around similar
ideas as SENSEI. These ideas, e.g. using
services and their orchestration as high-level
descriptions, and model-driven techniques
to derive (component-based) toolchains have
therefore been proven practical means for
tool interoperability. However, these ap-
proaches have been tailored for different ap-
plication domains. The approaches known
to the authors explicitly addressing software
evolution are less generic than SENSEI, or
do not cover the whole field. Moreover, no
standardization of services is offered, such
that implementations of conceptually equal
services will still be incompatible, impeding
reuse and the flexibility, e.g. to exchange
one implementation for another without any
changes to the integration logic. To achieve
this level of interoperability, SENSEI aims to
establish a catalog of software evolution ser-
vices, including a seamless approach to the
orchestration of appropriate implementations.

IV. CASE STUDIES
To develop and refine the service descrip-

tion model needed to capture all relevant
information of a catalog of software evolu-
tion services, and an integration framework
based thereon, two case studies have been
conducted, aimed at identifying services and
the kind of information needed to fully de-
scribe them.

Each case study analyses a well-
established software evolution activity:
architecture reconstruction, and software
measurement, respectively. A literature
survey was performed to discover different
variants, derive a generic process describing

the activity, and to identify sub-activities.
The software evolution activity was then
modeled in terms of services, starting out
with a basic description model focused
on services’ inputs, outputs, and possible
decomposition.

As guidance, two different modeling per-
spectives were considered:

Software Evolution Activity as a Ser-
vice. This is an outside view of a service.
It is concerned with the service’s interface
(its expected inputs, provided outputs, and
utilized data structures) and its semantics.
It contains the information expected to be
found in the service catalog.

Services for Software Evolution Activi-
ties. This is an inside view of service. While
it does not make any implementation-specific
assumptions, it does describe a service on a
process-oriented level in terms of used sub-
services. Its consideration therefore helps to
identify the services relevant to the activity.
It contains the information expected in a
generic service orchestration.

New requirements for the service descrip-
tion model were derived from issues which
arose while modeling the case studies’ ac-
tivities. Primarily these features deal with
providing more flexibility in service orches-
tration. These requirements, in turn, have
been the basis for the design of the de-
scription model. In the following, the case
studies on modeling architecture reconstruc-
tion (Section IV-A) and software measure-
ment (Section IV-B) as services are briefly
presented. Next, the resulting requirements
are described (Section IV-C).

A. Architecture Reconstruction
Evolving software systems are subject

to continuous change. Modifications to be
made to account for changing requirements
or system environment often clash with the
existing structure, and erode it over time.
Documentation often becomes outdated or
gets lost, so that the system’s architecture
has to be reconstructed out of the underlying
source code. This aspect can be realized with
clustering algorithms, on which this case
study is focused. An architecture reconstruc-
tion taxonomy by Ducasse and Pollet [10]
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Figure 1: Services for architecture reconstruction.
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Figure 2: Inputs and outputs of services for
architecture reconstruction (Wiggerts [16]).

names several alternative techniques. Cluster-
ing algorithms group similar entities such as
classes or methods into clusters. A similarity
measure determines the closeness of entities.

There are many different clustering algo-
rithms and tools in literature: Well-known
algorithms and tools are MoJo presented
by Tzerpos et. al [11], Bunch by Mitchell
and Mancoridis [12], Craft introduced by
Mitchell et al. [13] to evaluate clustering
algorithms, ACDC by Tzerpos et al. [14],
and one of the most recent tools is SCuV
published by Xu et al. [15]. For maximum
flexibility, it is desirable to have a clustering
service able to work with different clustering
algorithms and input data formats.

A possible way to realize such a ser-
vice reusing pre-existing services is shown
in Figure 1. In an initial step, a parser
extracts information from source code and
stores entities and their relationships in a
data format suitable for further calculations.

The first step in the clustering service itself
is to select a proper clustering algorithm
and similarity measure, since both affect the
quality of the clustering result [17]. Due
to the fact that this is not a trivial task,
selection services offer a meaningful support:
They embody a selection approach for clus-
tering algorithms as, for example, presented
by Shtern and Tzerpos [18]. After choosing
the algorithm and a similarity measure, a
transformation of the extracted data into the
input data format of the chosen algorithm
has to be done. Providing these selection
services allows for more scalability of service
realization regarding efficiency and precision.
A possible transformation can be chosen at
runtime. The transformed data is transferred
to the clustering execution service, where it
can be decomposed into clusters by executing
the algorithm and similarity measure chosen
previously. This service may utilize further
sub-services, like metrics and querying to
evaluate properties of clustering entities, or
the chosen similarity measure. In the end, the
clustered data is visualized using an existing
visualization service.

Based on a classification by Wig-
gerts [16], the input and output parameters
depicted in Figure 2 have to be specified
in the service catalog for the new services.
Modeled this way, the clustering service is
able to realize all existing clustering algo-
rithms and to execute them with different
input data formats.

B. Software Measurement
During the software development and evo-

lution process, it is difficult to evaluate the
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quality and quantities of software artifacts to
guarantee the quality of the whole software
product, including the development process
itself. Software metrics provide considerable
help to measure the quality and quantity of
software artifacts, and aid in program com-
prehension and directing further evolution
of the software. The IEEE defines a metric
as “A function whose inputs are software
data and whose output is a single numerical
value that can be interpreted as the degree
to which software possesses a given attribute
that affects its quality” [19].

The input depends on the current soft-
ware development phase. During analysis it
is important to measure the quality of a
given requirement specification or other doc-
umentation, whereas during implementation
it is more significant to determine the quality
of the source code. Possible input data for
metrics are therefore documentation as well
as source code. The wide range of possible
input data formats can be seen in the classi-
fication of Fenton and Pfleeger [20].

This aspect means that a metrics service
has to be flexible concerning the input data
structure. Nevertheless, it is significant to
have a uniform service for the calculation of
software metrics, due to the fact that software
measurement affects all phases of software
development, and thereby affects various de-
velopers and employees with different skills.
Having a uniform service eases the skill
adaption to new metrics.

An approach to realize software measure-
ment using services is depicted in Figure 3.
The metric service needs two inputs: The
metric, and the input to measure it on. As
a first step, a parser extracts the input data
into a format that can be used for further
calculations. Due to the fact that the in-
put format can be documentation as well

as source code, or other resources of the
software project, an appropriate parser has
to be chosen. Therefore, the input has to
provide information about the grammar and
the format of the input – for example in
form of a meta-model. The parser provides
the input model that can be used for further
calculations.

Metrics cannot always work directly on
the data provided by a parser, e.g. McCabe’s
cyclomatic complexity [21] is defined over
control-flow graphs. In these cases, a trans-
formation has to be executed to get the target
model as input for the metric calculation.
A way to resolve to an appropriate trans-
formation service from the required input
data structure of the chosen metric has to
be found. Here, this is represented by the
findTarget service.

The querying service queries the target
model to get the value of the chosen metric.
Again, a means to resolve metric names to
suitable query expressions has to be pro-
vided. This lookup is represented by the
findQuery service. After this step, the chosen
query code can be executed with the help
of the querying service on the target model
to deliver the query result as result of the
software measurement.

C. Requirements
The case studies have been used to dis-

cover requirements for a service description
model. In the following, observations regard-
ing needed structures to properly model soft-
ware evolution services, and recurring mod-
eling patterns are described. Each paragraph
is summarized by a requirement, which in
turn forms the basis of the service description
model subsequently designed (Section V).

1) Service Hierarchy: Besides the devel-
opment of the service description model,
which determines what kind of information



goes into the service catalog, and how it is
structured, another major goal of the case
studies was the discovery of relevant (sub)-
services (to actually fill the catalog). This
has been done by breaking down the main
software evolution activities under study into
the steps to be taken to perform them, and
describe them as services, as well. Decom-
posing services into sub-services revealed,
for example, services central to software
measurement, namely metrics and querying,
can be reused for architecture reconstruction.

Furthermore, including this hierarchical
information in the service catalog is useful
to organize it, and help catalog users find
the right services for their tasks. Modeling
services hierarchically also facilitates infor-
mation hiding to handle complex services.
→ The service description model must pro-
vide a means to arrange services in a decom-
position hierarchy based on service usage
relations. (1)

2) Service Variability: In both case stud-
ies, services have been modeled in a rather
abstract fashion. For example, both case stud-
ies require a parser service, which is what
one would be looking for in a service catalog.
In a given usage scenario, however, a specific
parser, capable of parsing source code in
the programming language(s) of the system
under study is needed. As another example,
consider the metric service from the software
measurement case study, which has two such
“degrees of freedom”: one determines which
metrics it should be able to calculate (as
it cannot be expected that all implementa-
tions support every possible metric there is),
the other what data structures it is able to
process. There is also an interdependency
between the two, since metrics are defined
over certain data structures.
→ The service description model must pro-
vide a means to model abstract services, and
to describe all possible instances. (2)

3) Data Abstraction Level: As a conse-
quence of the different service abstraction
levels required, it must also be possible to
model input and output data accordingly. For
example, for the generic parser service, the
input data structure is source code, and the

output data structure an abstract syntax tree
(AST). On this level, both data structures
cannot be described in much more detail than
this. If a usage scenario is given, though, i.e.
it is known that the parser must support the
Java programming language as input, then
the input data structure is known to be con-
forming to the Java language specification,
and an appropriate Java meta model can be
defined for the resulting AST.
→ The service description model must pro-
vide a means to model data structures, ar-
range them in specialization / generalization
hierarchies, and establish relationships be-
tween service instances and corresponding,
specialized data structures. (3)

4) Higher-Order Services: In the archi-
tecture reconstruction case study, it proved
useful to be able to delay service resolution
until runtime: Here, the actual clustering al-
gorithm is selected based on requirements
of the specific task at hand, and passed
as an argument to the clustering execution
service. Assuming the algorithm itself is also
represented as a service, this would make the
clustering execution service a higher-order
service (in analogy to higher-order functions,
which take functions as arguments). The al-
gorithm cannot be chosen completely auto-
matically, requiring a corresponding input to
the clustering execution service. The selec-
tion of an appropriate algorithm can be tool-
supported, though (in the case study e.g. by
implementing the selection process proposed
by Shtern and Tzerpos [18]), leading to the
identification of selection services.

In a similar fashion, the findTarget service
identified in the software measurement case
study has to instantiate the generic transfor-
mation service with a concrete one at run-
time, based on inputs. The findQuery service
is modeled more simply, only looking up data
to parameterize the querying service.
→ The service description model must pro-
vide a means to delay service resolution until
runtime. (4)

5) Service Types: Both case studies
showed that, besides services stemming from
the problem domain, e.g. clustering for archi-
tecture reconstruction, a need for additional



Figure 4: The service description model.

services arose for purely technical reasons,
e.g. data transformation services. This is con-
sidered an important distinction: technical is-
sues should be hidden from the orchestration
designer, who is tasked with designing the
workflows of his software evolution project
to have them tool-supported, as much as
possible. A tool builder, who is concerned
with implementing a service in a component,
might be more interested in technical sub-
services he might be able to utilize. In this
regard, a distinction between these different
types of services helps to organize the service
catalog. Another reason to differentiate along
these lines is reusability: mixing in technical
aspects into a domain-specific service makes
it hard to reuse, while the technical part can-
not be reused independently, at all (cmp. soft-
ware “blood types” by Siedersleben [22]).

Among the more auxiliary services en-
countered, some recurring patterns could be
observed: the most obvious helper services
are data transformations. Further helper ser-
vices are those to resolve to concrete ser-
vice instances at runtime, like findQuery. It
might be desirable to keep such auxiliary
functionality hidden away from practitioners,
and have the integration framework take care
of these aspects automatically, if possible.

→ The service description model must pro-
vide a means to classify different types of
services. (5)

V. SERVICE DESCRIPTION MODEL
Based on the requirements from the

case studies, and in continuation of previ-
ous work [23], a service description model
was designed, to capture all interoperability-
relevant properties of software evolution ser-
vices. The model is depicted in Figure 4.
It can be explained from three viewpoints,
each explained in the following: the service
catalog viewpoint (Section V-A), the ser-
vice orchestration viewpoint (Section V-B),
and the component mapping viewpoint (Sec-
tion V-C). An approach taking artifacts from
all three viewpoints and automatically de-
riving a toolchain integration solution is
briefly sketched, as well (Section V-D).
The software measurement case study has
been modeled according to the newly devel-
oped model, and serves as ongoing example.
Based on this model, a prototypical integra-
tion solution has been realized (Section VI).

A. Service Catalog
This viewpoint describes services as listed

in a service catalog, and therefore roughly
corresponds to the “as-a-service” perspec-
tive. Each artifact of this viewpoint is an
entry in the service catalog. The table in
Figure 5 depicts a simplified example, listing
a brief description of the service’s semantics,
type, input and output data structures, capa-
bility classes, and constraints (see below).

To keep the catalog clear and uncluttered
(Requirement 2), these services ought to be



generic, e.g. by having a single service Cal-
culateMetric, instead of one service for each
possible combination of supported metrics
and programming languages. To this end,
each Service may define several Capability-
Classes, describing variation points along
which concrete manifestations may differ.
In the aforementioned example, this would
be the sets of supported metrics and pro-
gramming languages, respectively. A capa-
bility class aggregates a set of capabilities,
and is defined with all possible elements
in the service catalog. The capability class
programming language, for example, would
contain Java, C++, COBOL, and so on.

The capability approach implies a require-
ment for a corresponding mechanism on data
structures (Requirement 3). Data structures
can therefore form generalization hierarchies,
and be marked abstract (requiring a non-
abstract subtype at runtime). This way, an
abstract AST data structure can be specialized
to a JavaAST or a COBOL_AST, essentially
introducing polymorphism. Notice that there
are usually direct interdependencies between
the actual data structures which are handled
by a service instance, and its required ca-
pabilities. Services therefore have to spec-
ify how a service instance’s capabilities de-
termine its concrete input and output data
structures, using constraints. In the example
in Figure 5, they express the correspondence
between ProgrammingLanguage capabilities
and input data structures, and that instances
of the CalculateMetric service can only cal-
culate those metrics for which they possess
the corresponding capability. A capability
class with a prime (′) indicates a reference
to a specific subset chosen at design time,
as opposed to the whole capability class
containing all possible capabilities.

To fulfill Requirement 5 and distinguish
between different kinds of services, they have
a ServiceType, based on the way they are
used (cmp. Siedersleben [22], or Cohen [24]
for similar classification schemes): Activity
services embody a software evolution activ-
ity, e.g. architecture reconstruction or soft-
ware measurement, and are always aimed at
a specific goal. Technical services realize and

CalculateMetric
Description Calculates a metric (pro-

vided by its name) over
source code and returns the
result as a single real num-
ber.

Type Activity

Input code : SourceCode
metric : MetricEnum

Output result : Real
Capability
Classes

ProgrammingLanguage
AvailableMetrics

Constraints
∀x: x ∈ AvailableMetrics′ ⇐ metric = x
Java ∈ ProgrammingLanguage′ ⇐

typeOf(code) = JavaCode
COBOL ∈ ProgrammingLanguage′ ⇐

typeOf(code) = COBOLCode

Figure 5: CalculateMetric as a service.

support activities, and are possibly applica-
ble to different ends, but are not directly
useful on their own. For example, formal
concept analysis is an alternative technique
to be used for architecture reconstruction in
place of clustering [10]. However, neither
technique would usually be performed as an
end in itself, but rather in the context of
a concrete, goal-oriented activity. An even
more primitive form are auxiliary services,
which are only necessary for integration pur-
poses, e.g. resolving concrete services (and
corresponding components) based on input
data at runtime, like the findQuery service of
the software measurement case study does.
Auxiliary services are simple by nature, and
might not require dedicated components im-
plementing them, but rather have the nec-
essary logic be created as required by an
automated integration framework. The tasks
of auxiliary services can be modeled declar-
atively as constraints, keeping orchestrations
clean from integration-related concerns.

B. Service Orchestration
This viewpoint captures the artifacts

which are created when orchestrating ser-
vices, i.e. coordinating existing services to
work together to support a specific software
evolution activity (“services-for” perspec-



Figure 6: Orchestration of service instances to calculate several COBOL and Java metrics.

tive), and thereby forming a more complex
service. The central concept of this viewpoint
is ServiceInstance: it represents a service in a
concrete usage scenario, with only a subset of
all possible capabilities of the generic catalog
service. Service instances are orchestrated
using an appropriate orchestration (process,
workflow) description language, or a subset
thereof, e.g. UML Activities, BPMN [25],
BPEL [26], or YAWL [27]. These languages
provide concepts like data flows, decision
nodes, etc. which have not been incorporated
in the model in Figure 4.

Each artifact of this viewpoint is an or-
chestration of service instances, a high-level
description of a software evolution activity
to be tool-supported. Figure 6 shows an ex-
ample of an orchestration for the Calculate-
Metric service using an UML activity di-
agram, extended by small dark squares to
depict capability classes. Here, the capability
classes have been subset to have this service
instance support calculating McCabe, Hal-
stead, and a “methods-per-class” (MPC) met-
ric on Java and COBOL code. There are more
capabilities to be set on the sub-services,
however, except for the QueryLanguage,
which has been fixed to GReQL [30], they
can be derived from the outer service’s capa-
bilities. Constraints can be used to express
their relationships. Also, this orchestration
contains no auxiliary services, as opposed
to the initial model of the software mea-
surement case study (findTarget, findQuery).
Constraints can be used in their stead, pro-
viding a solution to Requirement 4. The
following constraint is an example excerpt
of a constraint on the service orchestration
level to derive a concrete query expres-
sion from capabilities (the chosen Query-

Language: GReQL) and runtime data (the
chosen metric: McCabe):

1 C a l c u l a t e M e t r i c . m e t r i c = " McCabe "
2 ∧ GReQL ∈ Query . QueryLanguage ⇒
3 Query . que ry =
4 " c o u n t ( E{ Con t ro lF low } ) −
5 c o u n t (V{ B a s i c B l o c k } ) +
6 c o u n t (V{ P r o c e d u r e } ) * 2"

Decomposition of services into sub-
services (Requirement 1) is also viewed at
the orchestration level. To support this in
the description model, the composite pat-
tern [28] has been applied over class Service
(in, by analogy, over class Component). The
composition is based on service usage: a
complex service is decomposed into those
sub-services it can use to realize its func-
tionality. On the service catalog level, this
is a purely hypothetical relationship, serving
e.g. as a hint for tool developers which
services might useful when implementing a
complex service instance. A tool developer
might still choose to ignore this, and realize
a service instance monolithically. Looking
at the orchestration viewpoint, the relation-
ship is visible, as an orchestration shows
all service instances it is using. However,
whether a used service instance is realized
by a single, monolithic component, or can
be decomposed itself into more basic sub-
services, can be handled completely transpar-
ent. The other way around, orchestrations can
also be seen as establishing more complex,
composite service instances from more basic
ones. By generalizing from service instances
back to services, such services can then be
placed in the service catalog again.

C. Component Mapping
This viewpoint associates service in-

stances with actual implementations in the



form of Components. Like services, com-
ponents can be hierarchically decomposed
into AtomicComponents and more complex
CompositeComponents. As components can-
not be expected to realize the generic ref-
erence services of the catalog directly, i.e.
supporting all possible capabilities, the map-
ping is done by having a component refer-
ence one or more service instances, which
represent provided services, and the extend
to which they are realized. Notice that this
viewpoint does not model actual components,
but references them to establish the mapping
to services.

Each artifact of this viewpoint is an entry
in a registry, recording a mapping between a
concrete component (containing a tool), con-
forming to a specific component framework,
and a service instance, representing the im-
plemented service and supported capabilities.

D. Toolchain Integration
Using an artifact from each viewpoint

– a service orchestration modeling the de-
sired workflow to be tool-supported, a ser-
vice catalog containing the definitions of
the services used, and a component registry,
providing mappings to implementations for
those services – the creation of an appropriate
toolchain can be automated. This can be
done using model transformations to realize
a code generator. It requires two sets of
transformations: one to map to a specific
integration platform, e.g. a component frame-
work like Service Component Architecture
(SCA) [29], and another one to derive data
types from data structures by selecting an
appropriate data representation technology,
e.g. TGraphs [30], SDO [31], or EMF [32].

A component registry is assumed to only
contain components conforming to the same
framework for this to work. The data rep-
resentation may vary, though. Requiring all
components to use the same data representa-
tion technology might be too constraining,
especially for integrating already existing
tools. Encapsulating such tools in a simple
component wrapper is comparatively easy,
while changing the data representation would
either require to have tools adapted internally,
or to use data format transformations. Such

transformations are best kept separate from
components for reusability.

The output of the code generator is an
application conforming to the selected inte-
gration platform, containing all the required
components implementing service instances
used in the orchestration, plus one additional
component, called a composer, which is re-
sponsible for enacting the orchestration.

VI. VALIDATION
As a proof-of-concept, the Calculate-

Metric service, as orchestrated in Figure 6,
has been realized based on Apache Tuscany’s
Service Component Architecture (SCA) im-
plementation [33]. SCA-conforming compo-
nents were implemented for all the utilized
sub-services, and mapped, appropriately:
ParseComponent implements the Parser ser-
vice, TransformComponent the Transforma-
tor service, and QueryComponent the Query
service. Parsers by pro et con for COBOL
and Java [34] were used, JGraLab’s [30]
GReQL facilities provided querying, as
well as data representation in the form of
TGraphs. Rudimentary transformations im-
plemented previously [35] were used to cre-
ate control flow graphs from abstract syntax
trees of COBOL and Java programs. For
this prototype, no automatic code genera-
tion was used, yet. Instead the job of the
model-driven code generator has been carried
out manually, i.e. a composer component
(MetricComponent) to enact the orchestration
as designed, as well as all the necessary SCA
configuration artifacts, were written by hand.
There is also a FindQueryComponent, which
implements the lookup of queries for metrics,
derived from corresponding constraints.

Figure 7 depicts a screenshot of the pro-
totype project, opened in the development
environment. To the left, the package ex-
plorer lists the service interfaces and classes
implementing the components. In the cen-
ter, a visualization of an SCA composite
file is shown, which wires up components
with their dependencies – here, the Metric-
Component in its role as composer is de-
pendent on all other services, to be able
to invoke them and pass data along. The
right-hand side shows a code snippet of the



Figure 7: Screenshot of the prototype viewed in an IDE, showing wired-up SCA
components, and a code snippet from the implementation.

MetricComponent’s implementation. In the
pane at the bottom, the tail of the output of
a test run can be seen, reporting a McCabe
value of 6 for a Java test application.

The prototype works and shows that SCA
is a viable target platform. While imple-
menting, attention was paid to only derive
the hand-written logic from the service-level
artifacts created according to the model.

VII. CONCLUSION
This paper presented two case studies to

model software evolution activities as ser-
vices, and the description model derived from
it, as a step towards the SENSEI-catalog of
software evolution services for tool interop-
erability. A basic method has been devised to
conduct the case studies. It is based on two
different perspectives on software evolution
activities – viewing them as a service, and
looking at services for them. The case studies
are further guided by the goals of service
reusability, interoperability, and automation
of tool integration. While the main goal here
was to elicit requirements and derive a ser-
vice description model, the same method can
be applied to discover and describe further
services to fill the catalog.

The central contribution of this paper is
the developed service description model. It
enables the creation of a catalog of software
evolution services, aimed at providing stan-
dardized service interfaces for software evo-

lution activities and techniques, and serving
as basis for the implementation of a tool inte-
gration framework. The description model in-
troduces service capabilities, which enable a
generic description of services, while allow-
ing practitioners to designate their specific
required capabilities for a given project’s
tool support, and tools to specify provided
capabilities. Constraints on these capabilities
can be used to model their interdependencies,
and relations with services’ data structures
in a declarative way. This facilitates the
realization of a framework automating tool
integration by mapping service orchestrations
to concrete components, and resolving the
associated constraints to wire them up.
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