
Accelerating embedded software processing in an
FPGA with PowerPC and Microblaze

Luis Pantaleone and Elias Todorovich
INTIA Institute

Universidad Nacional del Centro de la Pcia. de Bs. As.
Paraje Arrollo Seco, Tandil (B7001BBO), pcia. de Bs. As, Argentina

Email: {lpanta,etodorov}@exa.unicen.edu.ar

Abstract—This paper presents an heterogeneous multi proces-
sor architecture for fast algorithms for image processing. Each
microprocessor process an asymmetric fraction of the image. The
proposed architecture uses one hardcore PowerPC microproces-
sor as master and multiple softcore MicroBlaze microprocessors
as slaves. Several architecture configurations were utilized to get
the maximum acceleration respect to a single microprocessor.
Decoding image algorithms for Bayer pattern are present as study
case. The systems were implemented in a Virtex-5 FXT30, with
one PowerPC and multiples MicroBlaze. A 3-core system with
one PowerPC and two MicroBlaze achieves 2X acceleration.

I. INTRODUCTION

Moderns FPGA digital systems can include one or more
microprocessors. The image processing could be done in the
FPGA or in a microprocessor. The Xilinx FPGAs, has the
MicroBlaze[1] softcore microprocessor, and in some families
the hardcore PowerPC[2]. The newest family Zinq-7000 uses
an ARM Cortex A9 dual core microprocessor[3]. This new
family uses the architecture AMBA developed by ARM instead
the CoreConnect. One advantage of processing the images
using algorithms implemented in a microprocessor is the ease
of implementing them against the implementation in FPGA.
The two alternatives give us a tradeoff between ease of
development and performance.

The software is sequentially execute. This has a main
disadvantage, the performance. If the objective is raise the
performance, the system can be implemented in a FPGA. Thus
takes advantage of the parallelism. But, the development time
is greater than the software.

One of the basic options when it comes to speeding
up a single core system is to increase the frequency. But
this increase has a limit. The MicroBlaze processor uses the
frequency of the digital system to operate. In contrast, the
PowerPC uses a core frequency independent of the digital
system. It also uses another clock frequency for the processor
PLB interfaces and the processor interconnect (crossbar). The
clock frequency ratio between processor clock and intercon-
nect clock can be N:1 or (2N+1):2, where N is an integer
greater than 0[2]. Because of this, sometimes by increasing the
core clock frequency lowers the crossbar frequency, resulting
in a digital system running at lower speed.

When the frequency reaches his maximum limit, another
solution is needed. One solution can consist in parallel pro-
cessing. Today high-performance embedded systems consist of
digital subsystems and multiple microprocessor. The software

program is distributed over multiple microprocessors using
sophisticated inter-connects[4].

The proposed architecture is based on multiple processors,
it is called multi-core system. When a multi-core systems
contains one PowerPC and one or multiples MicroBlaze, we
refer as an hybrid (heterogeneous) multi-core system. Many
papers[5][6][7] has been written about homogeneous multi-
processor architectures, but most of them uses only softcore
processors. Another paper has been written about heteroge-
neous microprocessors and their interconexion [8]. The fo-
cus is not placed on the parallelization, each microprocessor
performs a certain function. The focus in this work is the
software parallelization using heterogeneous microprocessors.
The main focus in this work is in the load balancing of the
microprocessor. Each microprocessor process an asymmetric
portion of the image instead symmetrical portion.

A image algorithm for Bayer image decoding is presented
a case study. The target architecture has been designed with
the Xilinx Platform Studio (XPS) version 14.3. The bus
architecture used is the CoreConnect by IBM.

The rest of this paper is organized as follows. Section
2 describes the multi-core systems and their alternatives. In
sections 3, we present results of our implementations and
comparison of their performance. Section 4 concludes the
paper with several major outcomes.

II. SYSTEM DESIGN

A system based on multiple processors has been designed.
It is based on the master/slave pattern[9]. The system has one
microprocessor as the master which synchronizes the slaves.

The system is restricted to parallelizable algorithms, that
that is when there are not dependecies among the original
image pixels and the processed image pixels to be processed.
In general, to calculate the new value of a pixel, the neighbors
data is needed. The submatrix formed by the central pixel and
the neighbors is called kernel. The most frequently kernels
used are 3x3 or 5x5. Exist another configurations used by some
algorithms[10].

When a new image arrives, the master calls the slave
microproccessors to process it. Every one executes the same
algorithm, but on different images areas. Both, the master
and the slaves, executes the algorithm in parallel. Every slave
works on a specific memory area, reading and writing in their
corresponding addresses. Required image portions are copied

from global memory area to a local memory area by the slave
microproccessor before the image processing. The master in
addition to the image processing is responsible for other tasks,
including image transmission from, to, and inside the system.
The software in each processor run in stand alone mode. To
run it usually an OS is not required.

Every microprocessor (master and slaves) has his local
memory for data and instructions. The microprocessors uses
the Harvard architecture instead the Von Neumann. The mem-
ories are implemented in block RAMs. All of these shares
the main memory, an external DDR RAM. It uses the MPMC
(Multi Port Memory Controller) core. The MPMC is respon-
sible for communication with the DDR external memory. It
has 8 independent ports. These ports can be connected to a
MicroBlaze microprocessor, PowerPC microprocessor, Video
Frame Buffer, PLB bus, etc.

The images arrive from a camera controller through a
parallel interface. This core acquires images from the external
camera and sends to the main memory, across the PLB bus.
It also controls the camera. The core has to synchronize the
value of pixel intensity with the control signals, also has to
synchronize with the camera clock and system clock. The
frequency at which work the camera is 24MHz. The camera
sensor doesn’t work with RGB pattern, instead, works with
pattern Bayer. Due to this, only need one channel instead of
the 3 channels required by RGB. The depth of color is 12 bits,
but the system works with the 8-bit MSB. It is described in
detail in[?].

The software executed in the master microproccessor has
an extra logic for the communication between it and each slave.
As the processing times of the master and slaves are different,
a synchronization mechanism is needed. The communication
between the master and each slave is trough the IP Core
MailBox. It is explained in detail by Xilinx[11].

The master can be implemented in a PowerPC in the case
that the FPGA have one, otherwise in a MicroBlaze. The slaves
are implemented with the MicroBlaze processor. The figure
1 shows an slave. The slave is formed by the MicroBlaze
microprocessor and local data and instruction memory. The
Mailbox IP core for communication between the MicroBlaze
and the master and others IP cores and buses is used.

A multi-core system could contain one or more slaves.
The Fig. 2 shows a QuadCore (4-core) system. This configu-
ration permits adding any number of slave units. The memory
controller uses the IP core MPMC. The PLB bus the camera
controller and the master microproccessor use one port each
one, so the are 6 ports available. Therefore up to six slaves
can be connected, if there are enough resources in the FPGA.
In the case that more than six slaves need to be conected the
ports access will be shared trough a PLB Bus resulting in a
slower memory access.

A. Asymmetrical processing

Each microprocessor (master or slave) has an area (or
portion) of the image to process (load balancing). This area
in general is not equal for all. The relative area of the image
of the master microprocessor is calculated in the Eq. 1, and
the relative area of the image for each slave microprocessor is
in the Eq. 2.

Slave

Slave

uB

bus PLB

interrup

controller

mailbox

bus LMB

data

memory
inst.

memory

bus LMB

Block

RAM

MPLB

SPLB

interruption

SPLB

interruption

XCL

DLMB

SLMB SLMB

ILMB

Port A Port B

SPLB

Fig. 1. Slave

Fm =
Ts

N−1

Tm + Ts

N−1

(1)

Fs =
1− Fm

N − 1
(2)

Where Fm and Fs are the relative area of the image for
master and slave respectively, and N is the number of cores
(microprocessors). The variables Tm and Ts are the time that
takes to process the 100% of the image by the master and
slave respectively.

The relative area of the image indicates the fraction of the
total image, and this number goes from 0 to 1. The absolute
area (or “area“) of the image represents the number of lines
of the image to process. This is calculated by multiplying the
total number of lines of the image and the relative area. The
result is a real number, must be rounded to the nearest integer.
Due to this, the area of each slave is not calculated from the
relative area. The number of lines to process is calculated from
3. The problem is that not always the result is an integer. Due
to this, the area of image of each slave must be rounded to the
lower integer modulo, and the area of the image of the master
are the remaining lines.

Ls =
1− Lm

N − 1
(3)

Master

PPC

bus PLB

MPMC

External DDR RAM

bus PLB

camera

core

UART GPIO
others

cores

Block

RAM

BRam

Cntrl

Slave Slave Slave

MPLB

PPC440MC

PLB

MPLB

SPLB SPLB SPLBSPLB

Port A

XCL

SPLB

XCL

SPLB

XCL

SPLB

Fig. 2. MultiCore System

One problem to find the perfect fractions or load balancing
to minimize the overall time is that the result is a float. These
rounded results in an imbalance of areas. Another problem
comes from the number of slaves. The larger the amount the
slaves, less processing lines on each core. It means that one
line less on each slave causes in an order of slaves number
more lines in the master.

The total lines of the image to process it must include some
extras image lines to perform the correct image processing.
This is because the image algorithms uses a kernel. The image
is stored in the memory in a row-major order.

III. EXPERIMENTAL RESULTS

The experimental results were implemented on a Virtex 5
FXT Evaluation Kit. The Virtex 5 FXT system board includes
the Xilinx Virtex-5 FX30T FPGA, with over 32,000 logic cells,
one embedded PowerPC 440 core and 2,448 Kb of Block
RAM. The system board includes 64 MB of DDR2 SDRAM.
The frequency used by the system (included MicroBlaze) was
125MHz and 250 MHz by the PowerPC.

The implemented algorithms for the experiments are Bayer
image decoding [12]. The Bayer image algorithms are “lineal
interpolation“[13] (called algorithm 1), “lineal interpolation
with correlation“[13] (called algorithm 2), and the “Gradient
Based Interpolation“ (called algorithm 3). The last one is
proposed by Laroche and Prescot[14]. The last one was used in
the Kodak DCS 200 digital camera system [15]. The difference
between these algorithms is the resulting image quality. To
achieve a better image quality more arithmetic operations be-
tween pixels and more memory access are required. Impacting
on the processing time.

For run time measureents, systems with one to six Micro-
blaze slaves and a PowerPC master were implemented. Due to
the Block RAMs limitation only systems with one (dual core)

TABLE I. CONFIGURATIONS SYNTHESIS RESULTS

dual core three core

Block Rams (in kb) 1,296 (52%) 2,160 (88%)
LUTs (in thousands) 8 (38%) 13 (63%)

TABLE II. ACCELERATION BETWEEN ASYMECTRIC AND SIMETRIC
FRACTIONS

Master Alg. 1 Alg. 2 Alg. 3

PowerPC 211ms 248ms 322ms
MicroBlaze 372ms 361ms 520ms

and two slaves (3-core), plus the master were implemented.
Table I shows the corresponding synthesis results. The number
of LUTs are rounded to thousands of them.

The time to process the complete image, obtained with
only one PowerPC (as master) and only one MicroBlaze (as
master) were taken for each algorithm. Table II shows the time
to process. In all the three algorithms the PowerPC is faster
than MicroBlaze, achieving an acceleration between 1.46X and
1.76X. Thus, the PowerPC can process a bigger area of the
image than the MicroBlaze. According to Xilinx [16][17], the
PowerPC 440 gets 2DMIPS/MHz in the Dhrystone benchmark,
while the MicroBlaze gets 1.19DMIPS/MHz (synthesized with
the performance configuration). It results the PowerPC is
1.68X times faster than MicroBlaze.

In a context of heterogeneous multi-core microprocessors
is interesting to study the case with processing times when the
image is divided into a symmetrical or asymmetrical fractions
of the image. The time to run the algorithms with symmetric
and asymmetric fractions of image on each core were taken
for timing analysis. The times for systems with more than
three slaves were taken with the dual core system. But in
this case, the master and the slave, process the fraction of
image corresponding to the number of microprocessors cores
to simulate. The run time for systems from 7 to 10 cores were
taken only as analysis measure. The systems were simulated on
a 3-core system, ignoring the ports limitation of the mpmc. The
times for image processing with the approach of asymmetric
and symmetric fractions of the image shown in Fig. 3, 4 and 5.
The asymmetrical approach is faster than the symmetrical, but
this advantage decreases as the number of cores increases. In
the case of the algorithm 2 and 3, the execution times between
the approaches of asymmetric and symmetric fractions of
image for systems 2 and 3 over 8 cores were the same.

The accelerations between a system with asymmetric and
symmetric fractions of image are show in the Fig. 6 . These
acceleration decreases as the numbers of microprocessor cores
increase. The three algorithms show a similar acceleration
pattern. The acceleration of the algorithm 3 with 8 or more
cores is almost 1. These means that the fractions of the
image tends to be almost symmetric. The other algorithms
tend to converge to a 1x acceleration in a similar way. The
acceleration of the algorithm 2 in a 9-core system is less than
1 (0.97X). Due to the inbalance of the image fractions, the
time processing of the master microprocessor is bigger than
the slaves microprocessor. In this case the processing time of
the asymmetric fraction is more than the symmetric fraction.

Times - Algotithm 1
Tim

e [
ms

]

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350

Cores1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
SymmetricAsymmetric

Fig. 3. Times for Algorithm 1

Times - Algorithm 2

Tim
e [m

s]

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350

Cores1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
SymmetricAsymmetric

Fig. 4. Times for Algorithm 2

This behavior can happen when the system has 4 or more
cores. The size of the image affects the convergence to 1 of
the acceleration of an algorithm. When the image are smaller,
asymmetric and symmetric fractions tend to be similar with
fewer cores than if they were larger images.

The acceleration with asymmetric fractions of image re-
spect with the one PowerPC core system is show in the Fig.
7. It means, the more slave processors the better will be the
acceleration, but there is a limit. This limit is determined by
the resources of the FPGA and the available ports of the
MPMC. Such limit is the physical type. The acceleration is
below the ideal acceleration, and the distance from the ideal
acceleration is increased with the increased of cores. The ideal
acceleration is the numbers of cores of the system, e.g. in a 4-
core system the ideal acceleration is 4X. Due to limitation
of memory ports, the maximum acceleration which can be
implemented is a 7-core system, its acceleration is between
4X and 5X. The 7-core system has one PowerPC master and
6 MicroBlaze slaves. However due to fisical limitation a 3-core
system was implemented, achieving an acceleration between
2.1X and 2.3X. The difference between the acceleration of the

Times - Algorithm 3

Tim
e [m

s]

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350

Cores1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
SymmetricAsymmetric

Fig. 5. Times for Algorithm 3

Acceleration Asymmetric over Symmetric fractions

Acc
ele

rat
ion

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35

0.95
1
1.05
1.1
1.15
1.2
1.25
1.3
1.35

Cores2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10
Algorithm 1Algorithm 2Algorithm 3

Fig. 6. Acceleration Assymmetric over symmetric fractions

three algoriths is given by the memory accesses and Arithmetic
operations.

IV. CONCLUSION

In this work an asymmetric multi-core heterogeneous mi-
croprocessors architecture on FPGA is proposed. It is aimed
for fast image processing software. The acceleration is given
by parallel processing. It uses a master multi-slave architecture.
The master and the slaves process an asymmetric fraction of
the total image. This architecture offers the following three
main benefits.

First, it reduces the design time and effort by implementing
the image processing in the microprocessors instead of the
FPGA hardware logic.

Second, the multi-core microprocessors architecture reduce
the execution time respect to a single microprocessor. This
master-multi slave architecture can be used with image pro-
cessing algorithms running in parallel.

Third, the asymmetric fractions of images aproach reduce
the idle time on the master, thus obtaining a reduction of the

Acceleration over 1 core
Acc

ele
rat

ion

00.51
1.52
2.53
3.54
4.55
5.56
6.57
7.58
8.59
9.510

00.511.522.533.544.555.566.577.588.599.510

Cores2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10
 Algorithm 1 Algorithm 2 Algorithm 3 Ideal acceleration

Fig. 7. Acceleration

time execution. This can be done by partitioning the image
in several asymmetric fractions, and then each microprocessor
processes its fraction.

Three algorithms were studied, successfully applying this
architecture for image processing. This architecture was im-
plemented using a Xilinx Virtex 5 FPGA with a PowerPC 440
embedded microprocessor.

ACKNOWLEDGMENT

This work was supported in part by the Agencia Nacional
de Promoción Cientı́fica y Tecnológica, Argentina, under
Project PICT-2009-0041.

REFERENCES

[1] Xilinx, MicroBlaze Processor Reference Guide, 2011.
[2] ——, Embedded Processor Block in Virtex-5 FPGAs (ug200), 2010.
[3] ——, “Extensible processing platform ideal solution for a wide range

of embedded systems,” 2010.
[4] A. Jerraya and W. W., “Hardware/software interface codesign for

embedded systems,” Computer, 2005.
[5] P. Huerta, J. Castillo, C. Pedraza, J. Cano, and J. I. Martine, “Sym-

metric multiprocessor systems on fpga,” International Conference on
Reconfigurable Computing and FPGAs, 2009.

[6] P. Huerta, J. Castillo, J. I. Martinez, and C. Pedraza, “Exploring
fpga capabilities for building symmetric multiprocessor systems,” 3rd
Southern Conference on Programmable Logic, 2007.

[7] A. Hung, W. Bishop, and A. Kennings, “Symmetric multiprocessing on
programmable chips made easy,” Proceedings Design Automation and
Test in Europe, 2005.

[8] S. Xu, C. Microsyst., O. Kingston, and H. Pollitt-Smith, “A multi-
microblaze based soc system: From systemc modeling to fpga proto-
typing,” Rapid System Prototyping, 2008. RSP ’08. The 19th IEEE/IFIP
International Symposium on, 2008.

[9] J. Xing, W. Zhao, and H. Hu, “An fpga-based experiment platform for
multi-core system,” Young Computer Scientists, ICYCS., 2008.

[10] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
2010.

[11] Xilinx, Dual processor Reference Design Suite (xpapp996), 2008.
[12] X. Li, B. Gunturk, and L. Zhang, “Imagedemosaicing: A systematic

survey,” Proc. SPIE, Visual Commun ImageProcess, 2008.
[13] S. Imaging, RGB Bayer Color and MicroLenses, 2010.

[14] C. A. Laroche and M. A. Prescott, “Apparatus and method for adaptively
interpolating a full color image utilizing chrominance gradients,” U.S.
Patent 5,373,322, 1994.

[15] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. S. III, “Demo-
saiking methods for bayer color arrays,” Journal of Electronic Imaging,
vol. 11, pp. 306–315, 2002.

[16] Xilinx, Virtex 5 Family Brochure, 2009. [Online]. Available: xilinx.com
[17] ——, MicroBlaze Soft Processor Core, 2013. [Online]. Available:

xilinx.com

